SWALP: Stochastic Weight Averaging for Low-Precision Training Guandao Yang, Tianyi Zhang, Polina Kirichenko, Junwen Bai, Andrew Gordon Wilson, Christopher De Sa

This work

- Studies how to leverage low-precision training to obtain a high-accuracy model, which may be higher-precision.
- Proposes a principled approach to using stochastic weight averaging in low-precision training (SWALP).
- Shows SWA sigificantly reduce the performance gap between low-precision and full-precision training.

Low-Precision Computation

SWALP

• Low-precision representation inherently limits the accuracy. • By averaging, we hope to recover a better solution.

SGD-LP Model accelerator	Here Warm up				Infrequent Averaging		
SWALP				\checkmark	\checkmark	\checkmark	↓ 、
Model host device							

Convergence Analysis

Let T be the number of iterations and δ be the quantization gap (the difference between two successive representable numbers). With standard assumptions and fixed point quantization, we can prove the following statements.

Theorem 1 (Quadratic)

The expected squared distance between the SWALP solution and the optimal one converges to 0 at a O(1/T) rate.

- SWALP has the same O(1/T) convergence rate with full-precision SGD.
- SWALP converges to the optimal solution regardless of the numerical precision.

Theorem 2 (Strongly Convex)

The expected squared distance between the SWALP solution and the optimal one has a $O(\delta^2)$.

- The best bound for low-precision SGD is $O(\delta)$ (Li et al, 2017).
- SWALP requires half of the number of bits to reduce the noise ball by the same factor.

Experimental Validation

Experiments

Cornell University

Averaging in Different Precision and Frequency

Results: ImageNet

QPyTorch

We release QPyTorch, a low-precision arithmetic simulation package in PyTorch. A diverse range of quantization methods is supported with GPU acceleration.

