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This work

e Studies how to leverage low-precision training to obtain a
high-accuracy model, which may be higher-precision.

e Proposes a principled approach to using stochastic weight
averaging in low-precision training (SWALP).

« Shows SWA sigificantly reduce the performance gap between
low-precision and full-precision training.
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e Low-precision representation inherently limits the accuracy.
e By averaging, we hope to recover a better solution.

Let T be the number of iterations and 6 be the quantization gap
(the difference between two successive representable numbers).
With standard assumptions and fixed point quantization, we can
prove the following statements.

Theorem 1 (Quadratic)
The expected squared distance between the SWALP solution and
the optimal one converges to 0 at a O(1/T) rate.

« SWALP has the same O(1/T) convergence rate with
full-precision SGD.

« SWALP converges to the optimal solution regardless of the
numerical precision.

Theorem 2 (Strongly Convex)
The expected squared distance between the SWALP solution and
the optimal one has a O(62).

e The best bound for low-precision SGD is O(8) (Li et al, 2017).
« SWALP requires half of the number of bits to reduce the noise
ball by the same factor.
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Averaging in Different Precision and Frequency
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QPyTorch

We release QPyTorch, a low-precision
arithmetic simulation package in PyTorch.
A diverse range of quantization methods is
supported with GPU acceleration.




